COULD IT BE LAL-D? THESE SIGNS AND LAB VALUES SHOULD RAISE SUSPICION FOR LAL-D1-6

Patients who have LAL-D may present with *any* of the following:

LDL-c (mmol/L): $\geq 3.4^{1,2,a,b}$ or HDL-c (mmol/L): $\leq 1.2^{1,2,a,c}$ with

Persistently elevated ALT^{1,3,a,d}

Suspected FCH with any of the following³:

- Persistently elevated ALT^{1,3,a,d}
- No family history³

Suspected HeFH with any of the following³:

- No confirmed mutation³
- Persistently elevated ALT^{1,3,a,d}
- No family history³

Suspected metabolic syndrome with any of the following^{3,4}:

- Persistently elevated ALT^{1,3,a,d} and
 - LDL-c (mmol/L): ≥3.4^{1,2,a,b} or
 - HDL-c (mmol/L): ≤1.2^{1,2,a,c}
- o BMI ≤95th percentile^{3,5,e}
- Normal fasting glucose/blood pressure^{3,5}

TEST FOR LAL-D IF YOU RECOGNIZE ANY OF THESE SIGNS OR LAB VALUES IN YOUR PATIENTS¹⁻⁶

*At baseline, patients in a clinical trial evaluating a potential treatment for LAL-D had a mean LDL-c of 5.4 mmol/L and a mean HDL-c of 0.8 mmol/L; 73% (48/66) of patients had ALT =1.5x ULN and <3x ULN, and 27% (18/66) of patients had ALT =3x ULN. An ALT =1.5x ULN according to specified gender-specific normal ranges was one of the eligibility criteria for enrollment. 15

 b In adult patients (mmol/L): LDL-c ≥4.1 (≥3.4 in patients on LLMs). $^{1.3.6}$

°In adult patients (mmol/L): HDL-c ≤1.0 (males)/≤1.3 (females). 1.3.6

^dAbove age- and gender-specific ULN.³

^eBMI ≤95th percentile for age and gender.^{3,5}

Abbreviations: ALT, alanine aminotransferase; BMI, body mass index; FCH, familial combined hyperlipidemia; HDL-c, high-density lipoprotein cholesterol; HeFH, heterozygous familial hypercholesterolemia; LAL-D, Lysosomal Acid Lipase Deficiency; LDL-c, low-density lipoprotein cholesterol; LLM, lipid-lowering medication; ULN, upper limit of normal.

AN ENZYMATIC DBS TEST CAN HELP DIAGNOSE LAL-D^{3,7}

The DBS test is highly accurate and easy to prepare, transport, and interpret for testing in high-risk populations 7,8

PREPARATION

STORAGE

TRANSPORT

A blood sample is spotted onto the DBS card; once completely dry, LAL activity is measured using a specific

LAL inhibitor⁷

DBS can be stored at room temperature for short periods or
at -20°C for longer periods⁷

DBS can be easily **shipped via** regular mail⁸

INTERPRETATION OF LAL ENZYME DBS RESULTS ⁵	
RESULTS	CLINICAL INTERPRETATIONS
Affected	LAL-D confirmed by reduced LAL activity
Indeterminate ^a	Repeat with fresh sample
Not affected	Rules out LAL-D

^aLAL above cutoff for affected, but below the normal reference range.

- Measurement of LAL activity in leukocyte and fibroblast samples can also be used to test for LAL-D²
- Testing for LAL-D may be simplified through the use of an EMR system
 - » If the LAL-D DBS test is available through your EMR system, create a preference list that includes LAL-D among the tests that you typically order for a liver or lipid diagnostic workup
- Family screening of identified patients is also critical²

TEST FOR LAL-D WITH AN ENZYMATIC DBS TEST^{3,7}

Abbreviations: DBS, dried blood spot; EMR, electronic medical record; LAL, lysosomal acid lipase.

References: 1. Burton BK, et al. N Engl / Med. 2015;373:1010-20. doi:10.1056/NEJMoa1501365. 2. Bernstein DL, et al. J Hepatol. 2013;58:1230-43. doi:10.1016/j.jhep.2013.02.014. 3. Reiner Ž, et al. Atherosclerosis. 2014;235:21-30. doi:10.1016/j.atherosclerosis.2014.04.003. 4. Grundy SM, et al. Circulation. 2004;109:433-8. doi:10.1161/01.CIR.0000111245,75752.C6. 5. Data on file, Alexion Pharmaceuticals. 6. Daniels SR, et al. Pediatrics. 2008;122:198-208. doi:10.1542/peds.2008-1349. 7. Hamilton J, et al. Clin Chim Acta. 2012;413:1207-10. doi:10.1016/j.cca.2012.03.019. 8. Grüner N, et al. J Vis Exp. 2015;97:e52619. doi:10.3791/52619.

